REAL ESTATE AND CONSTRUCTION IN EMERGING AND DEVELOPING COUNTRIES

Alter Property Data Webinar, November 2023

November 2023 Alexandre Banquet, Data Scientist, OECD Centre for Entrepreneurship, SMEs, Regions and Cities

- Main results of recent OECD study "Expanding the Doughnut? The Impact of Remote Work and COVID-19 on the Geography of Housing Demand"
- Stylised facts on the evolution of built-up areas in emerging and developing countries based on Earth Observation data

Expanding the Doughnut? The Impact of Remote Work and COVID-19 on the Geography of Housing Demand

Co-authors: Rudiger Ahrend, Alexandre Banquet, Manuel Bétin, Maria Paula Caldas, Boris Cournède, Marcos Díaz Ramírez, Pierre-Alain Pionnier, Daniel Sanchez-Serra, Paolo Veneri, and Volker Ziemann

Main questions

- Have OECD large metropolitan areas experienced a "doughnut effect" in housing demand during COVID-19?
- If so, what are the local drivers associated to such effect?

- In the "new normal" of more remote work, did housing demand increase **beyond** the **metropolitan boundaries**?
- What are the **local characteristics** underlying house price increases in places outside metropolitan areas?

Data

OECD Network of data providers for Sustainable and Inclusive Housing

	Source	Geographical units
AUT	Statistik Austria	955 municipalities
BEL	STATBEL	532 municipalities
DEU	vdpResearch_	4 413 postal codes + 121 districts
DNK	Statistics Denmark	582 postal codes
ESP	INE	5 400 municipalities + 31 districts
FIN	Statistics Finland	225 municipalities
FRA	Demande de valeurs foncieres	1 571 communes + 273 districts
GBR	UK Government Price Paid data	8 382 postcode sectors
HUN	Hungarian Central Statistics Office	2 889 Settlements + 23 Districts
ISR	Central Bureau of Statistics	798 cities
KOR	MOLIT	250 municipalities
MEX	Sociedad Hipotecária Federal (SHF)	10 705 zip codes
NOR	Statistics Norway	56 large municipalities + 11 counties
PRT	Confidencial Imobiliário	1 222 parishes
SWE	Svensk Mäklarstatistik	275 municipalities
USA	Zillow Research Institute	29 827 zip codes

© OECD | Centre for Entrepreneurship, SMEs, Regions and Cities | @OECD_Local |

Source: Adapted from "Changes in the geography housing demand after the onset of COVID-19", https://doi.org/10.1787/9a99131f-en

A small but significant "doughnut effect" within the boundaries of large metropolitan areas

Source: Adapted from "Changes in the geography housing demand after the onset of COVID-19", https://doi.org/10.1787/9a99131f-en

Is the doughnut extending?

1. Identify the metropolitan areas:

 FUAs of at least 1.5M people or the largest FUA in the country

2. Compute two buffers for each metropolitan area:

- Buffers are defined based on the FUA area
 - $Buffer1 = 0.2 * \sqrt{FUA area}$
 - $Buffer2 = 0.4 * \sqrt{FUA area}$
- **3.** Regress house price changes (%) at SAU level on:
 - Dummies for commuting zone and buffers (reference group is FUA centre)
 - Control for extended metropolitan areas fixed effects
 - Test different periods (from 2018-2019 to 2020-2021)

 $\Delta(price_i) = \alpha * Commuting_i + \beta * Buffer1_i + \gamma * Buffer2_{i,j} + ExtMA_{j(i)} + Country_{c(i)} + \varepsilon_{i,j}$

When most COVID lockdowns ended, house prices increased faster outside metropolitan centres

Note: Inner segment represents confidence intervals at the 90%, while whole segment covers confidence intervals at the 95%.

Within the extended doughnut, who is experiencing higher housing demand?

- 1. Classify SAUs by their degree of urbanisation (DEGURBA) into:
 - Rural areas, towns, or cities
- 2. For each ring (outside the FUA centre), regress house price changes (%) at SAU level on:
 - Dummies for rural areas and cities (reference group is towns)
 - Control for extended metropolitan area fixed effects
 - Test different periods (from 2018-2019 to 2020-2021)
 - Robustness checks: including initial house prices

 $\Delta(price_{i,i}) = \delta * Cities_{i,i} + \theta * RuralAreas_{i,i} + ExtMA_{i(i)} + Country_{c(i)} + \varepsilon_{i,i}$

Core

Degree of urbanisation

In the commuting zone, house prices increased faster in rural – cheaper – areas

Regression coefficients: Price growth differentials within commuting zones, in percentage points

Note: Inner segment represents confidence intervals at the 90%, while whole segment covers confidence intervals at the 95%.

In the first buffers, house prices increased faster in both cities and rural areas

Regression coefficients: Price growth differentials within buffers, in percentage points

Note: Inner segment represents confidence intervals at the 90%, while whole segment covers confidence intervals at the 95%.

 With remote work, faster house price increase outside metropolitan centres, reaching areas beyond metropolitan boundaries (commuting zones and outer rings)

- Home ownership demand shifted to places combining the benefits of both rural and urban life:
 - In the commuting zones: low-density and affordable settlements (rural areas)
 - Beyond large metropolitan areas (buffers): cities

"Doughnut effect" papers:

- ✓ "Changes in the geography housing demand after the onset of COVID-19", <u>doi.org/10.1787/9a99131f-en</u>
- ✓ "Urban House Price Gradients in the post-COVID era", <u>https://doi.org/10.1787/3c94ca85-en</u>

"Extended doughnut effect" papers:

- "Expanding the doughnut? How the geography of housing demand has changed since the rise of remote work with COVID-19", <u>https://doi.org/10.1787/cf591216-en</u>
- Analysis of local factors underlying housing demand in places outside metropolitan areas (forthcoming)

Built-up monitoring with Earth Observation in emerging and developing economies

Introduction

- Urbanisation in Emerging Economies
 - Unprecedented growth of cities
- Importance of monitoring
 - Assessing infrastructure development and housing needs
 - Assessing environmental impacts
 - Lack of official statistics
- Earth Observation (EO) technologies:
 - Landsat and Sentinel satellite data publicly available
 - High-resolution built-up estimates derived from satellite imagery data

Global datasets on built-up areas

	GHSL	Dynamic World
Authors	EC-JRC	Google, WRI
Satellite source	Sentinel-1 and 2, Landsat	Sentinel-2
Variables	Building surface, height and volume (including residential vs. non-residential), Population counts	Built-up area (land use/land cover)
Spatial resolution	100 m	10 m
Temporal resolution	Every 5 years	Every 5 days (missing data when clouds)
Time coverage	1975-2030 (projections)	Since 2015
Change analysis	Yes	Yes
Link	https://ghsl.jrc.ec.europa.eu	https://dynamicworld.app/

Global Human Settlement built-up surface 2020

Global Human Settlement residential vs. non-residential built-up surface 2020

Residential

Non-residential

Global Human Settlement building height 2018

Emerging and developing economies show lower builtup per capita than advanced economies (1/2)

Built-up surface per capita in selected countries and country groups, 2020

Emerging and developing economies show lower builtup per capita than advanced economies (2/2)

Built-up surface per capita in metropolitan areas (eFUAs), 2020

Emerging markets show much higher built-up expansion than advanced economies (1/3)

Built-up surface and population growth in selected countries and country groups, 2010 to 2020

Emerging markets record much higher built-up expansion than advanced economies (2/3)

Built-up surface growth in metropolitan areas (eFUAs), 2010 to 2020

Emerging markets record much higher built-up expansion than advanced economies (3/3)

Population growth in metropolitan areas (eFUAs), 2010 to 2020

Future urban landscapes: high built-up surface growth projections for India and Nigeria (1/3)

Built-up surface and population growth in selected countries and country groups, 2020 to 2030

Future urban landscapes: high built-up surface growth projections for India and Nigeria (2/3)

Built-up surface growth projections in metropolitan areas (eFUAs), 2020 to 2030

Future urban landscapes: high built-up surface growth projections for India and Nigeria (3/3)

Population growth projections in metropolitan areas (eFUAs), 2020 to 2030

Conclusion

- EO data powerful to monitor built-up areas and construction in emerging markets
- Unprecedented built-up expansion in emerging and developing economies:
 - +22% built-up over the past 10 years
 - +11% expected in the next 10 years
- Complementary data sources:
 - Accurate population counts
 - Characteristics of the built environment
 - Land functions within urban areas

Thank you

Twitter: @OECD_local LinkedIn: www.linkedin.com/company/oecd-local Website: <u>www.oecd.org/cfe</u> Blog: oecdcogito.blog

